
Chez Scheme Version 4 Release Notes
Copyright c© 1991 Cadence Research Systems
All Rights Reserved
September 1991 (revised 3/2/92)

Overview

This document outlines the changes made to Chez Scheme for Version 4 since Version 3. This version includes
the following enhancements:
• a new object inspector with support for stack walkbacks,
• complete support for complex numbers,
• full implementation of and comformance to the IEEE Scheme Standard,
• major improvements in performance,
• generational garbage collection,
• support for Decstation and Decsystem Mips-based computers,

and
• support for Silicon Graphics Mips-based computers.

Overall performance has increased by around 50 percent over Version 3 at all optimization levels. Some
programs are likely to run little or no faster (notably I/O intensive programs), while others may run as
much as two or three times faster. Floating-point intensive programs are typically about two times faster.
Compile time is approximately 30 percent faster.
Refer to the Chez Scheme System Manual, Revision 2.2 for detailed descriptions of the new or modified
procedures and syntactic forms mentioned in these notes.
Version 4 is available for the following platforms:
• Decstation and Decsystem computers
• Motorola Delta Series MC680X0-based computers
• Motorola Delta Series MC88000-based computers
• NeXT (Mach 2.0 or higher) computers
• Silicon Graphics (IRIX 3.3.2 or higher) computers
• Sun-3 (SunOS 3.X, 4.X) computers
• Sun-4, Sparcstation, and Sparcserver (SunOS 4.X) computers
• Vax (Ultrix 2.0 or higher)

This document contains four sections describing (1) functionality enhancements, (2) performance enhance-
ments, (3) bugs fixed, and (4) compatibility issues.

1. Functionality Enhancements Since Version 3

1.1. Inspector

An object inspector has been added to the system. By default, interrupts and explicit calls to break enter
a break handler. The break handler is also entered whenever debug is invoked after an error occurs. Once
inside the break handler, it is possible to reset to the current cafe (read-eval-print loop), enter a new cafe,
obtain statistics for the interrupted computation, exit from the handler and continue, abort Scheme, or
inspect the continuation of the interrupted computation. The inspector allows the programmer to “walk”
back through the continuation to see what procedures were active at the point where the computation was
interrupted. The inspector provides information about variable names and macro-expanded source code in
continuations and procedures unless the parameter generate-inspector-information is set to #f.

The inspector also allows the programmer to examine circular objects, objects such as ports and proce-
dures that do not have a print syntax, and objects such as variables that are not otherwise accessible, as well
as ordinary printable Scheme objects. It can be invoked outside of the break handler via the single-argument
procedure inspect.

Chez Scheme Version 4 Release Notes Page 1

1.2. Complex numbers

Chez Scheme now supports all standard operations on complex numbers. These operations include the pro-
cedures make-rectangular and make-polar, which are used to construct complex numbers, and real-part,
imag-part, magnitude, and angle, which are used to decompose complex numbers. In addition, all appro-
priate numeric operators have been extended to handle complex arguments.

The Chez Scheme reader and printer as well as string->number and number->string have been extended
to read and write complex numbers according to the syntax described in the IEEE Scheme Standard and
Revised4 Report on Scheme.

Two additional procedures, magnitude-squared and conjugate, have also been added.
Inexact complex numbers are represented by inexact complexnums, which contain two 64-bit floating

point numbers, and exact complex numbers are represented by exact complexnums, which contain two exact
ratios or integers.

1.3. IEEE Scheme Standard and Revised4 Report

Chez Scheme fully implements all features of and conforms fully to the IEEE Standard for Scheme as
documented in IEEE Std 1178–1990, IEEE Standard for the Scheme Programming Language.

As stated in the IEEE Scheme Standard, “Conforming implementations may have extensions, provided
they do not alter the behavior of any conforming program.” Since Chez Scheme defines several nonstandard
syntactic forms that may interfere with conforming programs,1 a “subset mode” has been implemented that
disables these syntactic forms and allows any conforming program to run. The application (subset-mode
’ieee) will place Chez Scheme into this mode.

Chez Scheme also implements all required and optional features of the Revised4 Report on Scheme.
The application (subset-mode ’r4rs) will place Chez Scheme into a mode similar to the ieee mode that
supports only those syntactic extensions documented in the Revised4 Report.

The application (subset-mode #f) returns the system to its default state.

1.4. Limits lifted or eliminated

The range of fixnums (integers directly encoded in Chez Scheme pointers) has been increased from −218.. +
218 − 1 to −229.. + 229 − 1, resulting in improved performance for computations in the extended range.

More importantly, string and vector lengths are limited only by the range of nonnegative fixnums.
Because the range of nonnegative fixnums has been increased to 0..229 − 1, the maximum size of a string or
vector is now effectively limited only by available virtual memory. The same is true for the maximum size
of a bignum, which is represented internally as a sequence of words.

The maximum size of the code generated for a procedure was previously limited to 64K bytes; as for
strings, vectors, and bignums, this limit has been removed. Various restrictions enforced by the assemblers
on branch displacement and similar displacements have been removed as well.

An internal limitation of 32MB for the size of the Scheme image has been eliminated, so the maximum
size of a Scheme image is now limited only by available virtual memory, i.e., by operating system per-process
limits and available swap space.

1.5. Distinct empty list and false objects

Chez Scheme now recognizes a distinction between the empty list (()) and the false object (#f). One
consequence of this change is that (eq? ’() #f) evaluates to #f. Furthermore, the empty list no longer
serves as boolean false in conditional expressions, so, for example, (if (cdr ’(a)) ’yes ’no) evaluates to
yes.

1.6. Void object

A new void object has been introduced. This object is returned as the result of most operations that return

1 Any complete implementation of Revised4 Report Scheme will necessarily contain at least one such
syntactic form, namely delay.

Chez Scheme Version 4 Release Notes Page 2

an “unspecified” value. It is obtainable directly by invoking the procedure (void). The void object prints as
#<void>, but the default waiter-write procedure suppresses printing of the void object, so that assignments
and calls to procedures such as load that return the void object do not result in any output to the console.

1.7. Specifying built-in identifier bindings

Built-in syntactic forms that expand into calls to primitives, such as case, which expands into calls to memv?,
use the syntactic form (|#primitive| identifier) to specify that the original top-level value of identifier
should be used rather than the current lexical or top-level value. (|#primitive| identifier) can also be
written as #%identifier.

|#primitive| was chosen rather than something more readable so that it would not conflict with symbols
that can appear in a IEEE Scheme Standard conforming program. (The vertical bars are not part of the
name; |#primitive| is Chez Scheme’s print syntax for (string->symbol "#primitive").)

1.8. Collection of code objects and symbols

Code objects and interned symbols are now eligible for collection by the storage management system. In prior
versions, once compiled code for a procedure was generated or loaded from an object file, it was permanently
resident in the system. Now, this code is released and collected by the garbage collector when it is no longer
accessible.

Also, in prior versions, interned symbols were retained indefinitely, even if no pointers from outside the
oblist (symbol table) to the symbol existed and the symbol had no top-level bindings or properties. Now,
interned symbols are released when the system can safely do so whenever the oldest generation, the generation
in which the oblist resides, is collected (see “Garbage Collection” under “Performance Enhancements”).

1.9. New printer controls

Two new printer controls have been added, primarily to support portability between Chez Scheme and other
Scheme systems. The parameter (see “Parameters”) print-brackets determines whether or not the pretty
printer uses brackets in place of parentheses for readability around, for instance, let bindings or cond clauses.
When set to #f, brackets are not used.

The parameter print-vector-length controls whether the length of a vector is printed, e.g., #3(1 2 3),
or omited, e.g., #(1 2 3). If #f, the length is omited.

The initial value for both parameters is #t. Both are set to #f by subset-mode when the argument is
either ieee or r4rs (see “IEEE Scheme Standard and Revised4 Report”).

1.10. Graph printing

The reader now accepts out-of-sequence graph references and marks. For example, ’(#1# #1=(a)) now
results in the same object as ’(#1=(a) #1#). The printer now prints marks in the most “natural” order,
e.g., marks always come before references, and marks always appear in increasing order from left to right
(or top to bottom) in the output. For example, ’(#0=(a) #1=(b) #1# #0#) will print as (#0=(a) #1=(b)
#1# #0#), not as, say, (#1=(a) #0=(b) #0# #1#) or (#1# #0=(b) #0# #1=(a)), although each of these forms
are recognized as the same object by read.

The printer now enters graph printing mode temporarily when a cycle is detected that would otherwise
cause infinite output.

1.11. Shared structure in compiled files

Shared structure (including cycles) within quoted objects is now maintained as such through the compilation
and subsequent loading process by compile-file and load.

1.12. Numeric type predicates

The numeric type predicates integer?, rational?, and real? have changed to adhere to the IEEE Standard
for Scheme and the Revised4 Report and to accommodate the addition of complex numbers. The integer?

Chez Scheme Version 4 Release Notes Page 3

predicate now returns true if its argument is an exact or inexact integer. For example, (integer? 3.0) and
(integer? 3.0+0.0i) now return #t. The rational? predicate now returns true if its argument is an exact
or inexact rational number. Furthermore, since Chez Scheme has no representation for irrational numbers,
this means that real? and rational? now behave the same. For example, (rational? 3.2) and (real?
3.2) both return #t. The complex? and number? predicates continue to return #t for all numeric types.

The exact? and inexact? predicates have been extended to handle complex numbers: Also, both
predicates now signal an error for any nonnumeric argument type.

1.13. Exactness

The following procedures are now “exactness preserving” (or more accurately, “inexactness preserving”),
to adhere to the IEEE Scheme Standard and the Revised4 Report on Scheme: quotient, truncate, floor,
ceiling, min, max, and rationalize.

Also, the following procedures, which were previously defined only for exact integer or rational argu-
ments, are now defined for inexact integer or rational arguments as well: numerator, denominator, even?,
odd?, gcd, lcm, and expt-mod.

1.14. IEEE signed zero, infinities, and not-a-number

On machines that support IEEE floating point arithmetic, Chez Scheme now properly reads, prints, and
maintains signed zero, infinities, and NaNs. The syntax -0.0 produces a negative zero internally that prints
as -0.0 on output. Similarly, the syntaxes -inf.0, +inf.0, and +nan.0 are used to represent positive and
negative infinity and IEEE NaN. Many floating point operations have been carefully coded to handle these
values in the spirit of the IEEE floating point standard.

There is a slight inconsistency in our treatment, in that inexact real numbers are represented as flon-
ums with an implicit exact zero imaginary part, whereas inexact imaginary numbers (such as +1.0i) are
represented as complexnums with an inexact positive zero real part.

1.15. Printing of flonums

Inexact numbers, represented internally as flonums, are now printed with complete accuracy and with the
fewest number of significant digits possible.2 One consequence of the increased accuracy is that flonums
printed by the system are always read as the same number on any other machine with the same internal
representation for floating point numbers.

1.16. Type-specific arithmetic operators

Chez Scheme Version 4 includes support for various new fixnum-specific, flonum-specific and mixed flonum
and inexact complexnum operators, in addition to the set of fixnum-specific operators supported by Version
3. The new operators include the type predicates flonum?, which returns #t if its argument is a flonum and
#f otherwise, and cflonum?, which returns #t if its argument is a flonum or inexact complexnum. (This
differs from inexact? in that inexact? signals an error if its argument is not a number, whereas cflonum?
simply returns #f.)

The new fixnum operators are fxsll (shift left logical), fxsra (shift right arithmetic), and fxsrl (shift
right logical).

The new flonum operators are fl+, fl-, fl*, fl/, fl=, fl<, fl<=, fl>, fl>=, and flabs.
The flonum/complexnum operators accept mixed flonum and inexact complexnum arguments, and

return either booleans, flonums or inexact complexnums. The new flonum/complexnum operators are
cfl-real-part, cfl-imag-part, cfl=, cfl+, cfl-, cfl*, cfl/, cfl-conjugate, and cfl-magnitude-squared.

The procedure fixnum->flonum may be used to convert a fixnum into a flonum, and the procedure
fl-make-rectangular may be used to create a complexnum from two flonum arguments.

2 These are requirements of the IEEE Scheme Standard but, interestingly, not of the IEEE floating point
standard.

Chez Scheme Version 4 Release Notes Page 4

1.17. Waiter customization

Chez Scheme waiters may be customized via the parameters waiter-prompt-string, waiter-prompt-and-read,
and waiter-write. Also, the ports used by the waiter for input and output may be changed by altering the
values of the parameters console-input-port and console-output-port. The action taken by the system
when a reset, exit, or abort occurs within a cafe can also be modified via the parameters abort-handler,
exit-handler, and reset-handler.

1.18. Transcripts

The procedure transcript-on no longer enters a new cafe, but instead simply opens a transcript file and
enters a transcript mode where all input and output to the console are recorded onto the file. The procedure
transcript-off must be used to terminate the transcript mode and close the transcript file.

The procedure transcript-cafe behaves like the old transcript-on, i.e., it starts up a new cafe and
records all console input and output activity to the transcript file until the cafe is exited. Transcript-off may
be used to terminate transcript mode and close the transcript file from within the new cafe, but it no longer
exits from the new cafe. Invoking exit or typing the end-of-file character will exit from the cafe, terminate
transcript mode, and close the transcript file.

1.19. list? predicate

The procedure list? has been altered to match the new Revised4 Report and IEEE Standard definition. It
now returns #t if its argument is a proper list, i.e., if it is noncircular and terminated by the empty list.
Otherwise, it returns #f.

1.20. oblist procedure

A new procedure, oblist, has been added that returns a list of the interned symbols currently known to the
Scheme system. The variable *oblist*, which previously held a pointer to the systems internal oblist, is no
longer bound in the initial heap.

1.21. property-list procedure

A new procedure, property-list, returns a list representing the properties associated (via putprop with its
symbol argument. A property list is structured as an alternating list of keys and values, (key value . . .).

1.22. isqrt procedure

A new procedure, isqrt, has been added that returns the integer square root of its integer argument.

1.23. Top-Level values for uninterned symbols

The compiler now allows uninterned symbols (created with string->uninterned-symbol and gensym) to
have top-level values. In previous versions, the compiler would signal an error (“cannot reference uninterned
symbol” or “cannot set! uninterned symbol”) whenever a reference or assignment to an uninterned symbol
was detected in the source code.

1.24. Warnings

Warning messages may now be issued by the compiler or run-time system via a warning mechanism essentially
similar to the error mechanism. After a warning message is issued, the default behavior of the system is to
continue. Warnings are signaled by user code via the procedure warning, whose interface is identical to that
of error.

The behavior of the system when a warning is issued may be changed by defining a new warning
handler. Warning handlers have the same interface as error handlers. A new warning handler may be
defined by altering the value of the parameter warning-handler. For example, to cause warnings to be
treated as errors, define the warning handler to be the same as the error handler as follows:

Chez Scheme Version 4 Release Notes Page 5

(warning-handler (error-handler))

1.25. Foreign procedure prototypes

The foreign-procedure syntactic form now evaluates the foreign name subexpression. Previously, the foreign
name was syntactically restricted to be a string, e.g., (foreign-procedure "incr" (integer-32 integer-32)
integer-32). The generalization allows foreign procedure prototypes to be defined. For example:

(define foreign-intXint->int
(lambda (x)

(foreign-procedure x (integer-32 integer-32) integer-32)))
(define incr (foreign-intXint->int "incr"))
(define decr (foreign-intXint->int "decr"))

In the example, two foreign procedures are constructed from the same prototype. (The strings "incr"
and "decr" are assumed to name C procedures already loaded or linked into the Scheme image.)

Foreign procedure prototypes provide a simple abstraction mechanism, and they can result in less code
generation as well, since a single foreign-procedure body can be shared by many foreign procedures.

1.26. file-position and file-length procedures

Two new procedures operating on ports have been added: file-position and file-length.
The procedure file-length accepts one argument, which must be a port, and returns the current length

in bytes of the file (or string for string ports) to which the port refers.
The procedure file-position accepts one or two arguments. The first argument must be a port, and

the second, if present, must be a nonnegative integer. When the second argument is omitted, file-position
returns the position of the port in the file (or string for string ports) to which the port refers, measured in
bytes from the start of the file (or string). When passed two arguments, file-position sets the file position
to the value of the second argument.

1.27. Parameters

All user-modifiable Chez Scheme system variables, such as *print-length*, have been converted to param-
eters. A parameter is a procedure that encapsulates a single variable. When invoked without arguments, a
parameter returns the value of its encapsulated variable. When invoked with one argument, the parameter
changes the value of its encapsulated variable to the value of its argument. A parameter may signal an error
if its argument is not appropriate.

New parameters may be created with make-parameter, a procedure of one or two arguments. The first
argument is the initial value of the internal variable, and the second, if present, is a filter applied to the
initial value and all subsequent values. The filter should accept one argument, signal an error if the value of
the argument is not appropriate, and return the value if it is appropriate.

For example, (print-length) is defined in the system as follows:

(define print-length
(make-parameter

#f
(lambda (x)

(unless (or (not x) (and (fixnum? x) (fx>= x 0)))
(error ’print-length "~s is not a positive fixnum or #f" x))

x)))

(print-length) ⇒ #f
(print-length 3)
(print-length) ⇒ 3

It is also possible to temporarily change the value of a parameter in a manner analogous to fluid-let for
ordinary variables, using the new syntactic form parameterize. For example, the expression below:

Chez Scheme Version 4 Release Notes Page 6

(parameterize ([print-length 3] [print-level 3])
(format "~s" ’((a (b (c)) d) ((e f) g) h i j k)))

evaluates to "((a (b (...)) d) ((e f) g) h ...)".
The following system variables have been converted to parameters:

old variable name new parameter name

case-sensitive? case-sensitive
collect-notify collect-notify
collect-request-handler collect-request-handler
collect-trip-bytes collect-trip-bytes
eval current-eval
standard-input current-input-port
standard-output current-output-port
error-handler error-handler
gensym-count gensym-count
gensym-prefix gensym-prefix
keyboard-interrupt-handler keyboard-interrupt-handler
optimize-level optimize-level
pretty-line-length pretty-line-length
pretty-one-line-limit pretty-one-line-limit
print-gensym print-gensym
print-graph print-graph
print-length print-length
print-level print-level
print-radix print-radix
timer-interrupt-handler timer-interrupt-handler

The following system variables have been converted to read-only parameters; they can be invoked only
without arguments:

old variable name new parameter name

most-negative-fixnum most-negative-fixnum
most-positive-fixnum most-positive-fixnum

The random-seed procedure has been converted into a parameter, and the set-random-seed! procedure has
been eliminated.

The default-foreign-libraries procedure has also been converted into a parameter, which can be
used to access or change the default list of libraries.

The following parameters have been added:
• abort-handler, exit-handler, reset-handler: see “Waiter customization.”
• break-handler: see “Inspector.”
• console-input-port and console-output-port: see “Waiter customization.”
• current-directory (extends and replaces set-working-directory).
• generate-inspector-information: see “Inspector.”
• machine-type (read-only): returns the current machine type, used as the default value for the third

argument to compile-file.
• print-brackets and print-vector-length: see “New printer controls.”
• subset-mode: see “IEEE Scheme Standard and Revised4 Report.”
• warning-handler: see “Warnings.”
• waiter-prompt-and-read, waiter-prompt-string, and waiter-write: see “Waiter customization.”

1.28. Support for Decstation/Decsystem computers

Version 4 includes support for Digital Equipment Corporation Decstation and Decsystem computers, includ-
ing the Decstation 2100 and 3100 and the Decsystem 5000 series.

Chez Scheme Version 4 Release Notes Page 7

1.29. Support for Silicon Graphics computers

Version 4 includes support for Silicon Graphics Mips-based computers running IRIX 3.3.2 or higher.

1.30. Support for NeXT computers

Version 4 includes support for NeXT mc68040- and mc68030-based computer systems under NeXT Mach 2.0.
Although it is probable that the mc68040 executable images will also run on NeXT mc68030-based systems
running NeXT Mach 2.0, this has not been tested.

Dynamic loading of foreign object code is not supported by the NeXT version; however, foreign code
can be included in a Chez Scheme image by rebuilding the system in the “custom” directory.

No interfaces to Objective C or the Application Kit are provided or envisioned at this time.

2. Performance Enhancements Since Version 3

2.1. Compiler optimizations

Various compiler optimizations have been added for Version 4, including recognition of more built-in primi-
tives, open coding of allocation operations, reordering of application expressions to avoid use of temporary
locations, reduction in the average size of a closure, and improved instruction selection. We have completely
redesigned the low-level representations for objects and pointers, and many of the optimizations we have
added are directly related to this redesign.

2.2. Type checking

The speed of most type checking operations is now considerably faster. Many operations require nothing more
than a register mask, compare, and branch; other operations require a single memory reference. Previously,
nearly all type checks required computing an index into a table and a memory reference to pull the type out
of the table.

2.3. Allocation

The speed of allocation operations, even for those that are not open coded (see “Compiler optimizations”)
has been improved by dedicating two machine registers to the current allocation pointer and current end of
allocation pointer. Previously, allocation required several memory references just to obtain heap space for
an allocated object.

2.4. Garbage collection

The garbage collector has been converted from a relatively simple stop-and-copy algorithm to a significantly
more complex generational algorithm. The generational algorithm allows objects that survive more than a
few garbage collections to migrate into an area of memory that is infrequently considered for collection. As
a result, the average time it takes to perform a garbage collection has been reduced, especially for programs
that create and retain a large number of heap allocated structures.

2.5. Floating Point Arithmetic

Floating point intensive programs coded with generic operators run approximately two times faster in Version
4. Even greater improvements are possible when using the new flonum- or complexnum-specific operators.
In addition, the allocation overhead for floating point-intensive computations has been cut in half.

2.6. Register allocation for procedure arguments

In previous releases, the return address and arguments for all procedures were passed on the stack. In Version
4, the return address and some of the arguments are passed in registers, along with the closure pointer, which
was always passed in a register.

Chez Scheme Version 4 Release Notes Page 8

2.7. Literal references

References to quoted objects are now placed directly into the code stream. In previous versions, a reference
to a quoted object (such as a list) required a register-offset indirect load from the current closure. One side
benefit of this change is that closures for procedures with no free variables are never allocated at run time,
even if they contain references to quoted objects.

2.8. Optimize-level 2 fixnum operations

Inline code for various fixnum operations, e.g., fx= and fx+, is now produced at optimize level 2. Previously,
fixnum operations were coded inline only at optimize level 3.

2.9. 68020 fixnum operations

On 68020-based systems, fixnum multiply and divide operations (fx*, fx/, and fxquotient), which were
previously coded as calls to library routines, are now open coded using the 68020’s multiply and divide
instructions.

3. Bugs Fixed Since Version 3

3.1. with and quasiquote

The release notes for Version 3 incorrectly claim that with and quasiquote can be used together; now this
is actually true.

3.2. with expansion bug

A bug that caused the expansion of with expressions to require time proportional to the square of the number
of clauses has been fixed.

3.3. set-timer bug

A bug in set-timer that could sometimes result in interrupts being disabled permanently has been fixed.

3.4. foreign-procedure bug

A bug in foreign-procedure that could cause interrupts to be ignored when the return value is a double
float has been fixed.

3.5. Sun-4 return address bug

A Sun-4 code generation bug that caused strange behavior when very large lambda expressions were compiled
has been fixed.

3.6. Console output bug

A bug that resulted in the last line of output to the console before the system exits being dropped if it was
not followed by a newline or explicitly flushed has been fixed.

3.7. exact->inexact bug

A bug in exact->inexact, which manifested itself in the reading of certain floating point numbers, has been
fixed. The bug involved converting exact ratios into inexact (floating point) numbers.

3.8. process and nonexistent commands

A bug that caused the system to exit after writing to a nonexistent process through a process output port
has been fixed.

Chez Scheme Version 4 Release Notes Page 9

3.9. dynamic-wind error messages

The error message resulting from passing dynamic-wind something other than a procedure for its second or
third argument has been fixed to report the correct offending object.

3.10. dynamic-wind out continuation bug

In Version 3, signaling an error or invoking a continuation from within the out argument to dynamic-wind
would result in repeated illegal instruction traps or memory faults. This bug has been corrected.

3.11. First-class environment bug

Occurrences of (the-environment) (available after invoking support-first-class-environments) within the
“else” part of an if expression sometimes caused invalid unbound variable errors. This bug has been fixed.

3.12. explode (SICP) bug

The procedure explode (available after invoking support-sicp) always signaled an error; this bug has been
fixed.

3.13. Multiple entries and provide-foreign-entries

When given a list of more than one entry to provide, provide-foreign-entries would fail with a “ld: - :
bad flag” error; this bug has been fixed.

3.14. Dynamic loading of foreign code under SunOS 4.1

Two bugs with dynamic loading of foreign code that arose due to changes in “ld” under SunOS 4.1 have been
fixed. Under SunOS 4.1, Chez Scheme Version 3 sometimes aborts with a “heap request refused” message
when there are linker errors during a call to load-foreign, and the detected errors go unreported. Also
under SunOS 4.1, Chez Scheme Version 3 provide-foreign-entries fails with a “no such file or directory”
error whenever the entry being provided is not already present in the Chez Scheme image.

3.15. cond => bug

The => syntax for a cond clause erroneously evaluated the conditional expression (the expression to the left
of =>) twice when this expression yields a true value. For example,

(cond [(begin (write ’hello) #t) => (lambda (x) x)])

would generate hellohello on the current output port, rather than simply hello. This bug has been fixed.

3.16. Bug with letrec and call/cc

A subtle bug with the interaction between call/cc and letrec has been fixed. The bug caused:

(letrec ((v 0) (k (call/cc (lambda (x) x))))

(set! v (+ v 1))
(k (lambda (x) v)))

to return 2 instead of 1.

3.17. call-with-input-file and call-with-output-file

The procedures call-with-input-file and call-with-output-file now close the ports they create immedi-
ately upon normal exit. In previous versions, the ports would be closed eventually by the garbage collector;
however, this may not be soon enough if the port must be closed and Scheme’s internal buffers flushed prior
to some subsequent operation.

Chez Scheme Version 4 Release Notes Page 10

3.18. Zombie processes

Zombie processes (also called “defunct” or “exiting” processes), created when processes created by calls to
process and load-foreign die, are now reaped automatically by Chez Scheme, via a Unix SIGCHLD signal
handler.

4. Compatibility Issues between Version 3 and Version 4

Several changes have been made for Version 4 to bring it in line with recent changes to the Revised Report
and IEEE Standard for Scheme, and to help users catch portability problems. Unfortunately, some programs
that worked correctly in Version 3 will no longer work correctly in Version 4.

The change to distinguish the empty list from the false object is likely to cause the most difficulty. Bugs
caused by this change are likely to come from either (a) specifying one of the constants #f or () where the
other is actually desired, or (b) expecting the empty list to count as false in boolean expressions. To find
problems caused by (a), look for occurrences of #f and (), and make sure that the appropriate constant is
being used. To find problems caused by (b), look for the use of variables or applications of non-predicate
procedures (especially cdr) in the test position of if, cond, when, unless, or do clauses to make sure the
variable or procedure uses #f to denote false. Also, be sure to check and and or expressions as well.

The switch from top-level variables to parameters may cause some problems, although they will generally
be easy to spot and easy to fix. Look for references to, assignments to, or fluid bindings for top-level
variables whose names begin and end with asterisks, e.g., *print-length*. Unless the variable is used for
user-defined purposes, convert the reference, assignment, or fluid binding into a call or parameterization of
the corresponding parameter.

The return values of various assignment operators, e.g., set! and set-car!, have always been unspec-
ified. However, in previous versions of Chez Scheme, these operators typically return the new value. For
example, in Version 3, (set! x 3) returns 3. In Version 4, most assignment operators return a special “void”
object. As a result of this change, programs that actually use the value returned by an assignment operator
will no longer function as expected. Look for uses of these operators, and make sure their value is not used.

The order in which the subexpressions of an application are evaluated is not specified by Scheme or
Chez Scheme. Version 4 often chooses a different order of evaluation for a given application from that chosen
by previous versions. As a result, programs that appear to be correct in Version 4 may not function as
expected in other versions, and vice-versa. Look for applications and let expressions where a given order of
evaluation is assumed, and introduce let expressions to enforce the desired order of evaluation. Also look
for calls to map where the procedure is expected to be applied to the elements of the list or lists in a certain
order.

Chez Scheme Version 4 Release Notes Page 11

