
Chez Scheme Version 8.0 Release Notes
Copyright c© 2010 Cadence Research Systems
All Rights Reserved
March 2010

Contents

1. Overview 3

2. Functionality Changes 4

2.1. Experimental library-group form (8.0) . 4

2.2. import-notify parameter (8.0) . 4

2.3. Library inspection procedures (8.0) . 4

2.4. compile-program return value (8.0) . 5

2.5. apropos-list, apropos, and library exports (8.0) . 5

2.6. Automatic library compilation (8.0/7.9.4) . 5

2.7. FreeBSD x86 64 support (8.0) . 5

2.8. OpenSolaris x86/x86 64 support (8.0) . 5

2.9. New and improved pathname operations (8.0/7.9.4) . 5

2.10. Unicode path names in Windows (8.0/7.9.4) . 6

2.11. Library directories and extensions (7.9.4/7.9.3) . 6

2.12. New top-level begin semantics (7.9.4) . 7

2.13. New foreign-data manipulation routines (7.9.4) . 8

2.14. Extended foreign-procedure types (7.9.4) . 8

2.15. UTF-16LE, UTF-16BE codecs and changes to utf-16-codec (7.9.4) 9

2.16. Support for non-Unicode character sets (7.9.4) . 9

2.17. New current-transcoder parameter (7.9.4) . 9

2.18. New transcoder? predicate (7.9.4) . 10

2.19. New port and file operations (7.9.4) . 10

2.20. Console error port (7.9.4) . 10

2.21. Debug changes (7.9.4) . 10

2.22. More programmer control over collection (7.9.4) . 11

2.23. New system querying procedures (7.9.4/7.5) . 12

2.24. New date/time conversion procedures (7.9.4) . 12

2.25. New sleep procedure (7.9.4) . 12

2.26. Profile palette change (7.9.4) . 12

2.27. New gensym printing option (7.9.4) . 12

2.28. Compile-time Values and Properties (7.9.4) . 13

2.29. New define-values syntax (7.9.4) . 13

2.30. create-exception-state procedure (7.9.4) . 13

Chez Scheme Version Version 8.0 Release Notes Page 1

2.31. New environment-mutable? predicate (7.9.4) . 13

2.32. with-interrupts-disabled (7.9.4) . 14

2.33. custom-port-buffer-size parameter (7.9.4) . 14

2.34. make-boot-file (7.9.4) . 14

2.35. Expression editor enabled for scripts (7.9.4) . 14

2.36. Windows heap search path (7.9.4) . 14

2.37. New (chezscheme) and (chezscheme csv7) libraries (7.9.4/7.9.3) 14

2.38. Procedures for manipulating top-level keyword bindings (7.9.4/7.9.3) 14

2.39. Compiling and loading programs and libraries (7.9.4/7.9.3/7.5) 15

2.40. #!fold-case and #!no-fold-case (7.9.3) . 15

2.41. New --optimize-level command-line option (7.9.3) . 15

2.42. file-buffer-size parameter (7.9.3) . 15

2.43. current-exception-state parameter (7.9.3) . 15

2.44. fork-thread and multiple values (7.9.3) . 15

2.45. system return value (7.9.3) . 16

2.46. abort optional argument (7.9.3) . 16

2.47. New inspector commands (7.9.3) . 16

2.48. inspect/object extensions (7.9.3) . 16

2.49. New I/O procedures and support for nonblocking I/O (7.9.3) 16

2.50. Expression editor delimiter handling (7.9.3) . 16

2.51. file-directory? and file-exists? change under Windows (7.9.3) 17

2.52. R6RS (7.9.2) . 17

2.53. Interaction environment and R6RS (7.9.2) . 18

2.54. Incompatible Changes (7.9.2) . 19

2.55. C library routines for 32- and 64-bit integers (7.9.2) . 21

2.56. New nonstandard character names (7.9.2) . 21

2.57. Fewer “invalid context for definition” errors (7.9.2) . 22

2.58. Windows library change (7.9.1/7.9.2) . 22

2.59. Saved heaps not currently supported (7.9.1) . 22

2.60. Thread-safe console ports (7.9.1) . 22

2.61. input-port-ready? and char-ready? (7.9.1) . 22

2.62. X86 64 Support (7.9.1) . 22

2.63. Additional byte-vector operations (7.9.1) . 22

2.64. meta-cond generalization (7.9.1) . 23

2.65. Default heap/boot search path (7.9.1) . 23

2.66. Tilde-prefixed paths under Windows (7.9.1) . 23

2.67. Months range from 1 to 12 (7.5) . 23

2.68. Monotonic time (7.5) . 23

2.69. New and altered expression-editor key bindings (7.5) . 24

2.70. Top-level value handling (7.5) . 24

Chez Scheme Version Version 8.0 Release Notes Page 2

3. Bug Fixes 24

3.1. assert, let-values, etc., and pattern variables or ellipses (8.0) 24

3.2. Bug in collector handling of weak pairs (8.0) . 24

3.3. Bogus clear-input and clear-output generic-port messages (8.0) 24

3.4. Bug current-time and current-date under Windows (8.0) 24

3.5. Boot file use of scheme-version (7.9.4) . 24

3.6. Work-around for automatic margins on MacOS X Terminal (7.9.3) 24

3.7. Invalid memory reference using hashtables (7.9.3) . 25

3.8. Bug in format tabulation (7.9.3) . 25

3.9. Expression editor datum comment handling (7.5) . 25

3.10. Expression editor clipboard bug under Windows (7.5) . 25

3.11. Bug in ash (7.5) . 25

3.12. Bug in inexact (7.5) . 25

3.13. Bug in handling of compile (7.5) . 25

4. Performance Enhancements 25

4.1. Reduced parameter overhead (7.9.4) . 25

4.2. Reduced predicate overhead for sealed record types (7.9.4) . 26

4.3. Optimized procedural record interface (7.9.1/7.9.4) . 26

4.4. Reduced letrec* undefined-variable checking overhead (7.9.3) 26

4.5. Improved register assignment for x86 (7.9.1) . 26

4.6. Improved recursive bindings (7.9.1) . 26

1. Overview

This document outlines the changes made to Chez Scheme for Version 8.0 since Version 7.4, most of which
are focused on converting Chez Scheme into an implementation of the new Scheme standard described in
the Revised6 Report on Scheme.

Version 8.0 is available for the following platforms. The Chez Scheme machine type (returned by the
machine-type procedure) is given in parentheses.

• Linux x86, threaded (i3le) and nonthreaded (ti3le)

• Linux x86 64, threaded (a6le) and nonthreaded (ta6le)

• MacOS X x86, threaded (i3osx) and nonthreaded (ti3osx)

• MacOS X x86 64, threaded (a6osx) and nonthreaded (ta6osx)

• MacOS X PowerPC, threaded (ppcosx) and nonthreaded (tppcosx)

• Windows x86, threaded (i3nt) and nonthreaded (ti3nt)

• OpenBSD x86, threaded (i3ob) and nonthreaded (ti3ob)

• OpenBSD x86 64, threaded (a6ob) and nonthreaded (ta6ob)

• FreeBSD x86, threaded (i3fb) and nonthreaded (ti3fb)

Chez Scheme Version Version 8.0 Release Notes Page 3

• FreeBSD x86 64, threaded (a6fb) and nonthreaded (ta6fb)

• OpenSolaris x86, threaded (i3s2) and nonthreaded (ti3s2)

• OpenSolaris x86 64, threaded (a6s2) and nonthreaded (ta6s2)

• Solaris 32-bit Sparc, threaded (sps2) and nonthreaded (tsps2)

• Solaris 64-bit Sparc, threaded (sp64) and nonthreaded (tsp64)

This document contains three sections describing significant (1) functionality changes, (2) bugs fixed, and
(3) performance enhancements. A version number listed in parentheses in the header for a change indicates
the first minor release or internal prerelease to support the change. Many other changes, too numerous
to list, have been made to improve reliability, performance, and the quality of error messages and source
information produced by the system.

More information on Chez Scheme and Petite Chez Scheme can be found at http://www.scheme.com, and
extensive documentation is available in The Scheme Programming Language, 4th edition (available directly
from MIT Press or from online and local retailers) and the draft Chez Scheme Version 8 User’s Guide.
Online versions of both books can be found at http://www.scheme.com.

2. Functionality Changes

2.1. Experimental library-group form (8.0)

A library-group form combines multiple libraries and possibly a top-level program into a single compilation
unit. This permits various optimizations, like procedure inlining, to occur across library boundaries, which
can improve the speed of the generated code significantly depending on the amount of interaction between the
procedures in the libraries. The library-group form also simplifies the packaging of applications structured
as multiple libraries in that it eliminates the need to distribute libraries separately from the application.

A library-group form contains a sequence of libraries followed optionally by a top-level program:

(library-group library-form ...)
(library-group library-form ... import-form body-form ...)

An include form can be used to insert one or more of the library forms from a file, and an include form
can be used to bring in the top-level program portion of the form as well.

This feature is experimental and might be replaced with some other mechanism or altered significantly in
future releases.

2.2. import-notify parameter (8.0)

When the new parameter import-notify is set to a true value, import displays messages to the console-
output port as it searches for the file containing each library it needs to load. The default value of this
parameter is #f.

2.3. Library inspection procedures (8.0)

Several new procedures are available for inspecting libraries:

• (library-list) returns a list of the names of the loaded libraries;

• (library-exports library-reference) returns a list of the exports of the specified library;

Chez Scheme Version Version 8.0 Release Notes Page 4

• (library-requirements library-reference) returns a list of the libraries required by the specified
library;

• (library-version library-reference) returns the version of the specified library; and

• (library-object-filename library-reference) returns a string identifying the file that contains the
object code for the specified library, if it was loaded from or compiled to an object file.

2.4. compile-program return value (8.0)

compile-program now returns a list of libraries directly invoked by the compiled top-level program. When
combined with library-requirements and library-object-filename, this can be used to determine the
set of files that need to be distributed with the compiled program file.

2.5. apropos-list, apropos, and library exports (8.0)

The apropos-list and apropos procedures produce additional information identifying matching identifiers
from loaded libraries. The list returned by apropos-list can include both symbols representing matching
identifiers in the interaction environment (as before) and (now) associations from library names to lists of
symbols representing the identifiers that match in that library. The information printed by apropos contains
the same information.

2.6. Automatic library compilation (8.0/7.9.4)

When the new parameter compile-imported-libraries is set to #t, the expander automatically calls
compile-library on any imported library before it loads it from the file system, as described in the entry
below. The default initial value of this parameter is #f. It is set to #t via the command-line option
--compile-imported-libraries.

Starting in Version 8.0, when compile-imported-libraries is #t, a library implicitly loaded via an import
form is recompiled even when an object file is present and not older than the source file, if a library the
object file depends upon has been or must be recompiled.

2.7. FreeBSD x86 64 support (8.0)

Support for running Chez Scheme under FreeBSD on the x86 64 architecture has been added. The non-
threaded version uses the machine type “a6fb,” and the threaded version uses the machine type “ta6fb.”

2.8. OpenSolaris x86/x86 64 support (8.0)

Support for running Chez Scheme with 32-bit pointers on the i386 architecture or 64-bit pointers on the
x86 64 architecture under OpenSolaris has been added, with machine types i3s2 (32-bit), a6s2 (64-bit), ti3s2
(32-bit threaded), and ta6s2 (64-bit threaded). C code intended to be linked with these versions of the
system should be compiled using the Gnu C compiler’s -m32 or -64 options as appropriate.

2.9. New and improved pathname operations (8.0/7.9.4)

The new procedure path-absolute? returns #t if its pathname argument is absolute; otherwise, it returns
#f. The new procedures path-first and path-rest return the first component of a pathname and the
remaining components of the pathname respectively. For example, (path-first "a/b/c") returns "a" and
(path-rest "a/b/c") returns "b/c". For pathnames that start with a root directory (including drives and
shares under Windows), home directory (e.g., ˜/abc or ˜user/abc), or a reference to the current or parent

Chez Scheme Version Version 8.0 Release Notes Page 5

directory (. or . .), the first component is that directory. The existing procedures path-last, path-parent
path-root, and path-extension have been made more sensitive to the overall structure of a pathname to
avoid giving nonsensical or ambiguous results.

2.10. Unicode path names in Windows (8.0/7.9.4)

Support for Unicode path names under Windows has been added. This affects file open operations such as
open-file-input-port or load, as well as filesystem operations such as delete-file, file-access-time,
file-exists?, mkdir, and directory-list. Support for the Windows \\?\ prefix has also been added
where it was not previously working, e.g., in path-parent and related routines, in file-exists? and
related routines, and in directory-list.

2.11. Library directories and extensions (7.9.4/7.9.3)

The parameter library-directories determines where the files containing library source and object code
are located in the file system, and the parameter library-extensions determines the filename extensions for
the files holding the code. The values of both parameters are lists of pairs of strings. The first string in each
library-directories pair identifies a source-file root directory, and the second identifies the corresponding
object-file root directory. Similarly, the first string in each library-extensions pair identifies a source-file
extension, and the second identifies the corresponding object-file extension. The full path of a library source
or object file consists of the source or object root followed by the components of the library name prefixed
by slashes, with the library extension added on the end. For example, for root /usr/lib/scheme, library
name (app lib1), and extension .sls, the full path is /usr/lib/scheme/app/lib1.sls.

The initial values of these parameters are shown below.

(library-directories) ⇒ (("." . "."))

(library-extensions) ⇒ ((".chezscheme.sls" . ".chezscheme.so")
(".ss" . ".so")
(".sls" . ".so")
(".scm" . ".so")
(".sch" . ".so"))

As a convenience, when either of these parameters is set, any element of the list can be specified as a single
source string, in which case the object string is determined automatically. For library-directories, the
object string is the same as the source string, effectively naming the same directory as a source- and object-
code root. For library-extensions, the object string is the result of removing the last (or only) extension
from the string and appending ".so". The library-directories and library-extensions parameters
also accept as input strings in the format described below for the --libdirs and --libexts command-line
options.

The --libdirs and --libexts options can be used to set library-directories and library-extensions
parameters from the command line. The format of the arguments to these options is the same: a sequence
of substrings separated by a single separator character. The separator character is a colon (:), except under
Windows where it is a semi-colon (;). Between single separators, the source and object strings, if both are
specified, are separated by two separator characters. If a single separator character appears at the end of
the string, the specified pairs are added to the existing list; otherwise, the specified pairs replace the existing
list. The parameters are set after all boot files have been loaded.

If no --libdirs option appears and the CHEZSCHEMELIBDIRS environment variable is set, the string
value of CHEZSCHEMELIBDIRS is treated as if it were specified by a --libdirs option. Similarly, if no
--libexts option appears and the CHEZSCHEMELIBEXTS environment variable is set, the string value
of CHEZSCHEMELIBEXTS is treated as if it were specified by a --libexts option.

These parameters are consulted by the expander when it encounters an import for a library that has not
previously been defined or loaded. By default, the expander searches for the library source or object file in

Chez Scheme Version Version 8.0 Release Notes Page 6

each pair of root directories, in order, trying each of the source extensions then each of the object extensions
in turn before moving onto the next pair of root directories. (If the library name forms an absolute pathname,
the library source and object directories are ignored.) If the expander finds a source file before it finds an
object file, it loads the corresponding object file if the object file exists and is not older than the source file.
Otherwise, the expander loads the source file. An exception is raised during this process if a source or object
file exists but is not readable or if an object file cannot be created.

When the parameter compile-imported-libraries is set to #t, the library-loading process is modified as
follows. If a source file is encountered and the corresponding object file does not exist, or if a source file is
encountered and the corresponding object file is older, the source file is compiled via compile-library to
define the library and produce the corresponding object file. (Since a library contained within a library file
is defined merely by compiling the file, the resulting object file is not loaded. This eliminates the cost of
loading the object file and recomputing the transformer expressions, but it does mean that any initialization
expressions in the object file outside of a library form are not evaluated. If such expressions are present,
it’s better to compile and load files explicitly to make sure they are evaluated when desired. On the other
hand, such expressions can also cause portability problems, so it’s even better to include only library forms
in library files.) Otherwise, the object file is loaded. If the object file depends on some library that has
been or must be recompiled, the source file is recompiled via compile-library to ensure that the library is
propery affected by any changes in the libraries it depends upon.

Whenever the expander determines it must compile a library to a file or loads one from source, it adds the
directory in which the file resides to the front of the source-directories list while compiling or loading
the library. This allows a library to include files found in or relative to its own directory.

2.12. New top-level begin semantics (7.9.4)

Groups of definitions within a top-level begin are now treated in a manner similar to lambda, library,
and top-level program bodies. This eliminates some ordering constraints on definitions appearing within a
top-level begin expression. For example:

(begin
(define-syntax a (identifier-syntax 3))
(define x a))

and

(begin
(define x a)
(define-syntax a (identifier-syntax 3)))

are now equivalent. Similarly, the begin form produced by a use of:

(define-syntax define-constant
(syntax-rules ()
[(x e)
(begin
(define t e)
(define-syntax x (identifier-syntax t)))]))

and the begin form produced by a use of:

(define-syntax define-constant
(syntax-rules ()
[(x e)
(begin
(define-syntax x (identifier-syntax t))
(define t e))]))

Chez Scheme Version Version 8.0 Release Notes Page 7

are equivalent. More generally, this reduces the difference between groups of forms wrapped in a top-level
begin form and groups of forms appearing with a lambda, library, or top-level program body, making it
easier to write code or macros that expand into code that operates correctly in all contexts.

2.13. New foreign-data manipulation routines (7.9.4)

For new procedures have been added for manipulating foreign data: foreign-alloc, which allocates a
block of memory outside of the Scheme heap, foreign-free, which frees a block previously allocated by
foreign-alloc, foreign-set!, which writes a new value to a foreign memory location, and foreign-ref,
which reads a value from a foreign memory location. The type of data written or read from a foreign memory
location is specified by a type symbol, one of the machine-dependent “C” types short, unsigned-short, int,
unsigned, unsigned-int (an alias for unsigned), long, unsigned-long, long-long, unsigned-long-long,
char, wchar, float, double, iptr (an integer the size of a pointer), uptr (an unsigned integer the size of a
pointer), or void* (an alias for uptr); one of the fixed-sized types double-float, single-float, integer-8,
unsigned-8, integer-16, unsigned-16, integer-32, unsigned-32, integer-64, or unsigned-64; or one
of the additional types boolean (a zero or nonzero int on the C side, #f or #t on the Scheme side) or fixnum
(an iptr limited to fixnum range).

The new procedure foreign-sizeof can be used to determine the size (in bytes) of a foreign type. It accepts
a symbolic type argument and returns the size as an exact nonnegative integer.

2.14. Extended foreign-procedure types (7.9.4)

The set of foreign-procedure and foreign-callable argument and result types has been extended to
include all of the types listed above for foreign-ref and foreign-set!. That is, to the set supported by
previous versions, Version 8.0 adds short, unsigned-short, long-long, unsigned-long-long, char, wchar,
float, double, void*, integer-8, unsigned-8, integer-16, and unsigned-16. It also makes integer-64
and unsigned-64 available even on 32-bit machines. Version 8.0 also adds ptr as an alias for scheme-object.

A set of new types for passing Scheme bytevectors and strings between Scheme and C have been added: u8*,
u16*, u32*, utf-8, utf-16le, utf-16be, utf-32le, and utf-32be.

The types u8*, u16*, and u32* are used to pass or return the address of a bytevector’s data from Scheme
to C or to pass or return a null-terminated string of 8-, 16-, or 32-bit integers from C to Scheme. Null
termination is required only when passing or returning data from C to Scheme and is used to determine
the length of the returned sequence of integers. Going the other direction, if the receiving C code requires
the data to be null-terminated, the null terminator should be included explicitly in the bytevector. Because
Scheme bytevectors and strings can include zero elements, it is often better to pass the length as an explicit
additional argument.

The types utf-8, utf-16le, utf-16be, utf-32le, and utf-32be are used to pass Unicode strings between
C and Scheme. When going from Scheme to C, the Scheme string is converted to a Scheme bytevector, using
the appropriate conversion with the appropriate null terminator, and a pointer to the bytevector’s data is
passed to C. When going from C to Scheme, the value should be a null-terminated sequence of 8-, 16-, or
32-bit integers and is converted via the appropriate conversion to a Scheme string.

The old string type is now an alias for utf-8. While previous releases did not allow string to be used
as a foreign-callable return type, Version 8.0 allows string and all of the other bytevector and string
types to be used as foreign-callable return types. Because the C code receives a pointer into a Scheme
object, and Scheme objects can be moved or destroyed, with their storage reclaimed for other purposes by
the Scheme garbage collector, the C code should not retain pointers it receives via any of the bytevector and
string types after it returns to or calls into Scheme.

A new wstring type has also been added and is an alias for utf-16le, utf-16be, utf-32le, or utf-32be
depending on the size of a C wchar t and the endianness of the host machine.

The valid set of result types also still includes void.

Chez Scheme Version Version 8.0 Release Notes Page 8

In an incompatible change from previous prereleases, bytevectors are no longer permissible as string inputs,
and bytevectors are no longer implicitly null terminated.

2.15. UTF-16LE, UTF-16BE codecs and changes to utf-16-codec (7.9.4)

Support for UTF-16LE and UTF-16BE codecs has been added. The procedure utf-16le-codec returns a
codec that can be used to read or write files in the little-endian form of UTF-16, with no byte-order mark
(BOM), and the procedure utf-16be-codec returns a codec that can be used to read or write files in the
big-endian form of UTF-16, also with no BOM.

For the UTF-16 codec returned by utf-16-codec, Version 8.0 handles byte-order marks differently from ear-
lier prereleases. First, Version 8.0 emits a BOM just before the first character written to a port transcoded
with a transcoder based on the UTF-16 codec. For textual ports created via transcoded-port, the BOM ap-
pears at the beginning of the underlying data stream or file only if the binary port passed to transcoded-port
is positioned at the start of the data stream or file. Second, when the system can determine that a transcoded
port is positioned at the start of a data stream or file, it automatically positions the port at the start of
the data beyond the BOM when an attempt is made to reposition the port at the beginning of the file, so
that the BOM is preserved. Finally, for input-output ports, the BOM is not emitted if the file is read before
written, and a BOM is not looked for if the file is written before read.

The utf-16-codec procedure can now be called with an optional argument that specifies the default endi-
annes. The argument defaults to the symbol big but can also be the symbol little. The codec returned
by (utf-16-codec ’little) behaves just like its statndard counterpart, but if no BOM is present when
the file is first read, the file is assumed to be encoded in little-endian format rather than big-endian format.
This allows programs to read files claimed to be Unicode files but actually encoded in UTF-16LE with no
BOM, while still handling those that might have BOMs. It also allows programs to create BOM-prefixed
files that use little-endian rather than the default big-endian format.

2.16. Support for non-Unicode character sets (7.9.4)

Support for handling non-Unicode character sets has been added.

For non-Windows systems that provide built-in support for iconv and for Windows systems upon which an
iconv dynamic-link library (DLL) can be loaded, the iconv-codec procedure takes a string naming a code
page and returns a codec that can be used as the basis of a transcoder used to transcode files or convert
between bytevectors and strings. The set of supported code pages depends on the version of iconv available;
consult the iconv documentation or use the shell command iconv --list to obtain a list of supported code
pages.

Two additional procedures are available under Windows. The procedure multibyte->string is a wrap-
per for the Windows API MultiByteToWideChar function. It takes a code-page identifier and a bytevector
containing a sequence of multibyte characters and converts them to a Scheme string containing the cor-
responding sequence of whole characters. Similarly, string->multibyte is a wrapper for the Windows
API WideCharToMultiByte function. It takes a code-page identifier and a string and returns a bytevector
containing a sequence of the corresponding multibyte characters. A code-page identifier is an exact nonneg-
ative integer or one of the symbols cp-acp, cp-maccp, cp-oemcp, cp-symbol, cp-thread-acp, cp-utf7, or
cp-utf8, which have the same meanings as the like-named API constants.

2.17. New current-transcoder parameter (7.9.4)

The new parameter current-transcoder, which defaults to the value of (native-transcoder), determines
the transcoder used when textual files are opened by operations for which an explicit transcoder is not
specified, e.g., open-input-file, open-output-file, load, compile-file, and include.

Chez Scheme Version Version 8.0 Release Notes Page 9

2.18. New transcoder? predicate (7.9.4)

The new procedure transcoder?, which should be standard but is not, returns #t if its argument is a
transcoder and #f otherwise.

2.19. New port and file operations (7.9.4)

The new procedure file-port? returns true if its port argument is a file port, which includes any port
based directly on an O/S file descriptor (e.g., one created by open-file-input-port, open-output-port,
open-fd-input-port, etc., but not a string port). The new procedure port-file-descriptor returns the
file descriptor assocated with a file port.

The new procedure get-mode retrieves the permissions on the file named by its string argument and returns
them as a exact integer in the same form as the mode argument to chmod. If the optional follows? argument
is supplied and is #f, If follow? is specified and #f, symbolic links are not followed; othewise, they are
followed.

Three procedures have been added to allow the times recorded for a file to be retrieved:

• file-access-time, which returns a time record representing the time of last access of a file,

• file-modification-time, which returns a time record representing the time of last modification to a
file, and

• file-change-time, which returns a time record representing the time of last change to a file, which
might include a change in permissions.

Each of these takes a string pathname or file port. Each also takes an optional follow? argument, as for
get-mode. The follow? argument is ignored when the first argument is a port.

2.20. Console error port (7.9.4)

The new parameter console-error-port determines the port to which conditions and other messages are
displayed by default-exception-handler, which is initial value of the base-exception-handler parameter
that determines how uncaught exceptions are handled. When the system determines that the standard output
and standard error streams are directed to the same place (tty/console, file, pipe, etc.) the initial value of
this parameter is the same as the initial value of console-output-port. Otherwise, the initial value of this
parameter is a different port tied to the standard error stream of the Scheme process. The initial value of
current-error-port is the same as the initial value of console-error-port.

2.21. Debug changes (7.9.4)

The continuation of a failed assert or a call to assertion-violation, assertion-violationf, error,
errorf, or syntax-error is now included within the conditions they pass to raise. Conditions encapsulating
raise continuations (conditions of type &continuation) can also be created explicitly by the procedure
make-continuation-condition. The predicate continuation-condition? returns #t if its argument is a
continuation condition, and the procedure condition-continuation returns the continuation encapsulated
within a continuation condition.

When the default exception handler is invoked with any serious or non-warning condition, including one
that encapsulates a continuation, it displays the condition and also saves it for possible later use by the
debugger in the debug-condition parameter. The debug procedure in turn allows the condition and/or the
continuation encapsulated within it to be inspected.

In previous prereleases, the continuation made available to the debugger was the continuation of the call to
the default exception handler, but this is often the wrong continuation. For example, if a guard has caught

Chez Scheme Version Version 8.0 Release Notes Page 10

and reraised the exception, perhaps after performing some clean-up action like closing a file, the continuation
is that of the raise call in the guard, not of the original raise.

Ordinarily, the user must type debug explicitly to enter the debugger and inspect the last debug condition or
its continuation. If, however, the parameter debug-on-exception is set to #t, the default exception handler
directly enters the debugger, from which the continuation (control stack) of the exception can be inspected.
The --debug-on-exception option may be used to set debug-on-exception to #t from the command line,
which is particularly useful when debugging scripts or top-level programs run via the --script or --program
options.

2.22. More programmer control over collection (7.9.4)

The storage manager now gives the programmer more control over the garbage collector. First, the collect
procedure allows the programmer to specify the target generation for each collection, and even cause ob-
jects to be collected into a static generation previously used only when compacting the heap. Second,
collect-maximum-generation is now a parameter that can be used to alter the number of generations used
by the collector. Third, bytes-allocated now takes an optional generation argument that can be used to
monitor generation sizes.

When called without arguments, collect behaves as it did before. That is, it collects generations g and
younger every rg times it is called, where r is the value of the parameter collect-generation-radix.
The target generation into which generations g and younger are collected is g + 1, except when g is the
maximum nonstatic generation, in which case the target generation is g itself. (Younger generations have
lower numbers, with generation 0 being the youngest generation into which objects are placed when they
are created.)

When called with one argument, which must be a generation g in the range 0 through m, where m is the
maximum nonstatic generation, the oldest generation collected is g . The target generation is g for the
maximum nonstatic generation and g + 1 otherwise. In previous releases, the oldest generation collected
might be greater than g , if the older generation would ordinarily have been collected the next time g is
collected.

When called with two arguments, the first, g , determines the oldest generation to be collected, as if only one
argument were provided. The second, gtarget , determines the target generation. When g is the maximum
nonstatic generation, gtarget must be g or the symbol static. Otherwise, gtarget must be g or g + 1. When
the target generation is the symbol static, all data in the nonstatic generations are moved to the static
generation, from which objects are never collected. This is primarily useful after an application’s permanent
code and data structures have been loaded and initialized, to reduce the overhead of subsequent collections.

The procedure collect-maximum-generation is now a parameter. When called without arguments, it
returns the current maximum nonstatic generation. This is a change from previous releases, in which
(collect-maximum-generation) returns a number one greater than the maximum nonstatic generation,
i.e., the number assigned to the static generation.

A more significant change is that collect-maximum-generation can now also be used to change the number
of generations. When called with one argument, g , which must be an exact integer in the range 1 through
254, collect-maximum-generation changes the maximum nonstatic generation to g . When set to 1, only
two nonstatic generations are used; when set to 2, three nonstatic generations are used, and so on. When
set to 254, 255 nonstatic generations are used, plus the single static generation for a total of 256 generations.
Increasing the number of generations effectively decreases how often old objects are collected, potentially
decreasing collection overhead but potentially increasing the number of inaccessible objects retained in the
system and thus the total amount of memory required.

Finally, the bytes-allocated procedure now takes an optional generation argument, which must be an exact
nonnegative integer no grater than the value of (collect-maximum-generation) or the symbol static.
When a generation argument is supplied, bytes-allocated reports the number of bytes allocated in that
generation, rather than the total number of bytes allocated in all generations. This information might be

Chez Scheme Version Version 8.0 Release Notes Page 11

used to help guide an adaptive collection strategy based on the sizes of the generations.

2.23. New system querying procedures (7.9.4/7.5)

The procedure scheme-version-number returns three exact nonnegative integer values: the major version
number, the minor version number, and the sub-minor version number. For example, in Chez Scheme Version
7.9.4, (scheme-version-number) returns the three values 7, 9, and 4.

The procedure scheme-version returns a string that identifies the system (Petite Chez Scheme or Chez
Scheme) and version number.

The procedure petite? returns #t when called in Petite Chez Scheme and #f when called in Chez Scheme

The procedure threaded? returns #t when called in a threaded version of Chez Scheme and #f otherwise.

The procedure get-process-id returns the process id of the process. It is the same for all threads running
in the same process in threaded versions of Chez Scheme.

The procedure get-thread-id returns the Chez Scheme thread id for the current thread. It is different for
each thread and is not related to the process id or any other O/S process or thread id.

2.24. New date/time conversion procedures (7.9.4)

The new procedures date->time-utc and time-utc->date convert between time objects with type time-utc
and date objects.

2.25. New sleep procedure (7.9.4)

The sleep procedure takes a time object with type time-duration, which can be created using make-time,
and causes the invoking thread to suspend operation for at least the amount of time indicated by the time
object, unless the process receives a signal that interrupts the sleep operation. The actual time slept depends
on the granularity of the system clock and how busy the system is running other threads and processes.

2.26. Profile palette change (7.9.4)

Profile palettes must now contain three or more (rather than two or more) entries. The first entry is used for
unprofiled code, the second for unexecuted profiled code, and the remainder for executed profiled code. By
default, a black background is used for unprofiled code, and a gray background is used for unexecuted profiled
code, while background colors ranging from purple to red are used for executed profiled code, depending on
frequency of execution, with red for the most frequently executed code.

2.27. New gensym printing option (7.9.4)

When the parameter print-gensym is set to pretty/suffix, the printer prints the gensym’s “pretty” name
along with a suffix based on the gensym’s “unique” name, separated by a dot (”.”). If the gensym’s unique
name is generated automatically during the current session, the suffix is that portion of the unique name
that is not common to all gensyms created during the current session. Otherwise, the suffix is the entire
unique name.

(define g1 (gensym))
(define g2 ’#{g0 qlw4di6s4woz0sy-0})
g1 ⇒ #{g0 ql8sto9wbe3de7u-0}
g2 ⇒ #{g0 qlw4di6s4woz0sy-0}
(print-gensym ’pretty/suffix)

Chez Scheme Version Version 8.0 Release Notes Page 12

g1 ⇒ g0.0
g2 ⇒ g0.qlw4di6s4woz0sy-0

This new option is particularly useful as alternative to the pretty option for programs that generate many
gensyms with the same pretty name, by calling gensym with a string argument, e.g., (gensym "x"), as
illustrated below.

(print-gensym ’pretty/suffix)
(map gensym (make-list 5 "x")) ⇒ (x.0 x.1 x.2 x.3 x.4)

2.28. Compile-time Values and Properties (7.9.4)

Two mechanisms are now available for attaching information to identifiers in the compile-time environment:
compile-time values and compile-time properties. These mechanisms are useful for communicating informa-
tion between macros. For example, a record-definition macro might use one of these mechanisms to store
information about the record type in the compile-time environment for possible use by record definitions
that define subtypes of the record type.

A compile-time value is a kind of transformer, created with the procedure compile-time-value, that can
be associated with an identifier via define-syntax, let-syntax, letrec-syntax, and fluid-let-syntax.
When an identifier is associated with a compile-time value, it cannot also have any other meaning, and an
attempt to reference it as an ordinary identifier results in a syntax error.

A compile-time property, on the other hand, is maintained alongside an existing binding, providing additional
information about the binding. Properties are ignored when ordinary references to an identifier occur.
Compile-time properties are defined with define-property, which is a definition and can appear wherever
any definition can appear.

The mechanisms used by a macro to obtain compile-time values and properties are similar. In both cases,
the macro’s transformer returns a procedure p rather than a syntax object. The expander invokes p with
one argument, an environment-lookup procedure lookup, which p can then use to obtain compile-time values
and properties for one or more identifiers before it constructs the macro’s final output. lookup accepts one
or two identifier arguments. With one argument, id , lookup returns the compile-time value of id , or #f if id
has no compile-time value. With two arguments, id and key , lookup returns the value of id ’s key property,
or #f if id has no key property.

2.29. New define-values syntax (7.9.4)

The new define-values form can be used to define multiple variables to the multiple values produced by
an expression. (define-values formals expr) is similar to (define var expr) except that the left-hand
side is structured as a lambda formals list. It evaluates expr and binds the variables specified by formals to
the resulting values.

2.30. create-exception-state procedure (7.9.4)

The new procedure create-exception-state creates an exception state whose stack of exception handlers
is empty except for, in effect, an infinite number of occurrences of a given handler at its base. If no handler
is supplied, a handler that invokes the value of the base-exception-handler parameter is used.

2.31. New environment-mutable? predicate (7.9.4)

The new procedure environment-mutable? accepts one argument, an environment. It returns #t if the
environment is mutable, otherwise #f.

Chez Scheme Version Version 8.0 Release Notes Page 13

2.32. with-interrupts-disabled (7.9.4)

The new syntactic form with-interrupts-disabled is identical in syntax and behavior to the existing
critical-section form. While the critical-section is still supported, it may be removed in a future
release, because it does not actually provide a critical section when multiple native threads are used in
threaded versions of the Chez Scheme. Rather, as the new name suggests, the form disables interrupts,
which are per-thread, but when used in one thread has no affect on what other threads can do.

2.33. custom-port-buffer-size parameter (7.9.4)

A new parameter, custom-port-buffer-size, has been added. This parameter controls the sizes of the
buffers associated with custom ports. The initial value is currently 128.

2.34. make-boot-file (7.9.4)

The new procedure make-boot-file is used to combine a set of source and object files into a boot file. The
procedure takes an output filename, a list of strings naming base boot files, and zero or more input filenames.
It writes to the output file a boot header naming the base boot files (as with make-boot-header) followed
by the object code for each input file. If an input file is not already compiled, make-boot-file compiles the
file as it proceeds.

If the list of strings naming base boot files is empty, the first named input file should be a base boot file,
i.e., petite.boot or some boot file derived from petite.boot. If no input files are specified, make-boot-file
creates a boot header; thus, make-boot-file subsumes the functionality of make-boot-header.

2.35. Expression editor enabled for scripts (7.9.4)

For scripts that call new-cafe, the expression editor is now used unless it has been disabled via the
--eedisable command-line option. The history file is not read until the first call to the prompt-and-read
procedure installed by the expression editor.

2.36. Windows heap search path (7.9.4)

Within a heap-search path under Windows, the two-character sequence %x now expands into the exe-
cutable’s directory, and the default heap-search path now consists only of %x. The system thus looks for
boot files only, by default, in the same directory as the executable. The registry key HeapSearchPath in
HKLM\SOFTWARE\Chez Scheme\csvversion, where version is the Chez Scheme version number, e.g., 7.9.4,
can be set to override the default search path, and the environment variable SCHEMEHEAPDIRS can be set to
override both the default and the registry setting, if any.

2.37. New (chezscheme) and (chezscheme csv7) libraries (7.9.4/7.9.3)

The new (chezscheme) library is identical to the existing (scheme) library, and the new (chezscheme csv7)
library is identical to the existing (scheme csv7) library. The new names can be used to make clear that
Chez Scheme extensions are involved.

2.38. Procedures for manipulating top-level keyword bindings (7.9.4/7.9.3)

The new procedure define-top-level-syntax, which accepts a symbol representing a keyword, a trans-
former, and an optional environment defaulting to the current interaction environment, can be used to
establish a top-level keyword binding in an interactive environment, just as define-top-level-value can

Chez Scheme Version Version 8.0 Release Notes Page 14

be used to establish a top-level variable binding. The new procedure top-level-syntax, which accepts a
symbol and an optional environment, can be used to retrieve the transformer associated with a keyword
in an environment. The new procedure top-level-syntax?, which accepts a symbol and an optional en-
vironment, can be used to ask whether an identifier represented by a symbol is bound as a keyword in an
environment.

2.39. Compiling and loading programs and libraries (7.9.4/7.9.3/7.5)

New procedures for compiling and loading programs and libraries have been added. compile-program is
similar to compile-script but differs in that it implements the semantics of RNRS top-level programs, while
compile-script implements the semantics of the interactive top-level. The resulting compiled program will
also run faster than if compiled via compile-file or compile-script. load-program is similar to load
but also differs in that it implements the semantics of RNRS top-level programs.

compile-library and load-library are identical to compile-file and load except they treat the input
file as if prefixed by an implicit #!r6rs, disabling any Chez Scheme lexical extensions, such as explicit vector
lengths. More precisely, Chez Scheme lexical extensions can be used within a library compiled or loaded
with these procedures only if the #!chezscheme marker appears before the first use of those extensions.

2.40. #!fold-case and #!no-fold-case (7.9.3)

The reader now recognizes two new comment directives, analogous to the existing #!r6rs and #!chezscheme
directives. If #!fold-case has been seen (more recently than #!no-fold-case) in an input stream, sub-
sequent reads from port are case-insensitive, i.e., symbols and character names are case-folded, as if by
string-foldcase. If #!no-fold-case has been seen (more recently than #!fold-case) in an input stream,
subsequent reads from the port are case-sensitive. If neither has been seen in an input stream, case-sensitivity
is determined as before by the case-sensitive parameter, whose value defaults to #t. The case sensi-
tive parameter is not consulted if either #!fold-case or #!no-fold-case has been seen. #!fold-case,
#!no-fold-case, and case-sensitive are all ignored when vertical bars or slashes (excluding Unicode
hex escapes) are seen. Like #!r6rs and #!chezscheme, #!fold-case and #!no-fold-case do not require
delimiting, so #!fold-caseaBc reads as the symbol abc.

2.41. New --optimize-level command-line option (7.9.3)

The new --optimize-level option sets the initial value of the optimize-level parameter to 0, 1, 2, or 3. The
value is 0 by default.

2.42. file-buffer-size parameter (7.9.3)

A new parameter, file-buffer-size, has been added. This parameter controls the size of a buffer used
when a file is opened with anything by buffer mode none. The default value of this parameter is currently
set at the minimum of 4096 and the value of the underlying operating system’s stdio BUFSIZ constant.

2.43. current-exception-state parameter (7.9.3)

The new current-exception-state may be used to save and later restore the state of the exception system.

2.44. fork-thread and multiple values (7.9.3)

fork-thread now permits its thunk argument to return zero values or more than one value.

Chez Scheme Version Version 8.0 Release Notes Page 15

2.45. system return value (7.9.3)

The system procedure, which runs a command in a newly forked process and waits for it to terminate,
now raises an exception if the subprocess creation fails, if the exit status of the forked process cannot be
determined, or if the forked process is terminated by a signal. Otherwise, it returns the exit status of the
child process.

2.46. abort optional argument (7.9.3)

The abort procedure now takes an optional argument, like exit, that may be used to specify the exit code
for the Scheme process.

2.47. New inspector commands (7.9.3)

The interactive inspector now supports reset (r) and abort (a) commands, which may be used to reset to
the current REPL or abort from the system.

For characters and strings, the interactive inspector also supports a new unicode command that displays
the Unicode scalar values of the character or string elements.

2.48. inspect/object extensions (7.9.3)

The continuation and code inspector-object source-path message now returns a position as well as a file
name if the file name is known but the (unmodified) file cannot be found. Previously, it returned a single
value in this case, the file name.

2.49. New I/O procedures and support for nonblocking I/O (7.9.3)

New input procedures get-string-some, get-string-some!, and get-bytevector-some! have been added.
get-string-some is like the R6RS get-bytevector-some but operates on textual input ports and re-
turns a string rather than a bytevector. get-string-some! and get-bytevector-some! are like the R6RS
get-string-n! and get-bytevector-n! except they may return less than the requested count.

The new procedures put-string-some and put-bytevector-some are like put-string and put-bytevector
except they do not guarantee to write the entire string or bytevector, and they return a count of the actual
number of elements written.

The procedure set-port-nonblocking! may be used to put a port into nonblocking mode. When a port
is in nonblocking mode, get-string-some may return an empty string, get-bytevector-some may return
an empty bytevector, and get-string-some! and get-bytevector-some! may return 0, in each case in-
dicating that no input is available, i.e., an attempt to read would block. Similarly, put-string-some and
put-bytevector-some may return 0, indicating that an attempt write to the port would block.

The procedure port-nonblocking? may be used to determine if a port is in nonblocking mode. The predi-
cates port-has-port-nonblocking?? and port-has-set-port-nonblocking!? return #t if the nonblock-
ing status of a port may be queried or set and #f otherwise. They should be called before attempting to use
the set-port-nonblocking! or port-nonblocking? procedures.

2.50. Expression editor delimiter handling (7.9.3)

The expression editor no longer changes the corresponding close delimiter when an open delimiter is inserted
into existing code, since this often led to surprising results.

Chez Scheme Version Version 8.0 Release Notes Page 16

2.51. file-directory? and file-exists? change under Windows (7.9.3)

The file-directory? and file-exists? predicates now return #t under Windows for existing drive names
like c:, mounted volumes like //server/mount, and directories specified with (or without) a trailing slash
(and regardless of whether forward or backward slashes are used).

2.52. R6RS (7.9.2)

(Initial support was included in Version 7.9.1.)

Version 8.0 implements the entire language of the Revised6 Report on Scheme (R6RS) and associated li-
braries, including all of the syntactic requirements and each export of the standard libraries, namely:

(rnrs)
(rnrs arithmetic bitwise)
(rnrs arithmetic fixnums)
(rnrs arithmetic flonums)
(rnrs base)
(rnrs bytevectors)
(rnrs conditions)
(rnrs control)
(rnrs enums)
(rnrs eval)
(rnrs exceptions)
(rnrs files)
(rnrs hashtables)
(rnrs io ports)
(rnrs io simple)
(rnrs lists)
(rnrs mutable-pairs)
(rnrs mutable-strings)
(rnrs programs)
(rnrs r5rs)
(rnrs records procedural)
(rnrs records syntactic)
(rnrs records inspection)
(rnrs sorting)
(rnrs syntax-case)
(rnrs unicode)

Top-level programs are supported via the --program command-line option, i.e., the shell command:

scheme --program pathname

runs the top-level program contained in the file named by pathname. To create an executable R6RS top-level
program on Unix-based system, insert:

#! /usr/bin/scheme --program

at the front of the top-level program (adjusting the path for scheme or replacing scheme with petite as
appropriate) and give the file execute permissions. To make use of existing executable top-level programs
containing the “shebang” line

#! /usr/bin/env scheme-script

recommended by R6RS nonnormative appendix D.1, create a copy or symbolic link of the Scheme executable
to scheme-script and copies or symbolic links of the “scheme” or “petite” boot file to scheme-script.boot.
Place the former somewhere in the path searched by /usr/bin/env and the latter in a standard directory

Chez Scheme Version Version 8.0 Release Notes Page 17

for Chez Scheme boot files, e.g., the same place where scheme.boot and/or petite.boot already reside.
(This may already be done as part of the installation process.)

2.53. Interaction environment and R6RS (7.9.2)

The default interaction environment used for any code that occurs outside of an R6RS top-level program
or library (including such code typed at the REPL or loaded from a file) contains all of the bindings of
the (scheme) library (or scheme module, which exports the same set of bindings). This set contains a
number of bindings that are not in the R6RS libraries. It also contains a number of bindings that extend the
R6RS counterparts in some way and are thus not strictly compatible with the R6RS bindings for the same
identifiers. To replace these with bindings strictly compatible with R6RS, simply import the rnrs libraries
into the interaction environment by typing the following into the REPL or loading it from a file:

(import
(rnrs)
(rnrs eval)
(rnrs mutable-pairs)
(rnrs mutable-strings)
(rnrs r5rs))

To obtain an interaction environment that contains all and only R6RS bindings, use the following.

(interaction-environment
(copy-environment
(environment
’(rnrs)
’(rnrs eval)
’(rnrs mutable-pairs)
’(rnrs mutable-strings)
’(rnrs r5rs))

#t))

The read-eval-print loop (REPL) and files loaded using load or included using include also support various
Chez Scheme lexical extensions, by default. To disable these extensions, #!r6rs can be inserted at the front
of a file to be loaded or included or before the start of an expression typed into the REPL. The #!r6rs mode
is implicit for libraries loaded as a result of an import form and for R6RS top-level programs. To enable
Chez Scheme extensions in libraries and R6RS top-level programs, the prefix #!chezscheme can be used.

To be useful for most purposes, library and import should probably also be included, from the (scheme)
library.

(interaction-environment
(copy-environment
(environment
’(rnrs)
’(rnrs eval)
’(rnrs mutable-pairs)
’(rnrs mutable-strings)
’(rnrs r5rs)
’(only (scheme) library import))

#t))

It might also be useful to include debug in the set of identifiers imported from (scheme) to allow the debugger
to be entered after an exception is raised.

Most of the identifiers bound in the default interaction environment that are not strictly compatible with
the R6RS are variables bound to procedures with extended interfaces, i.e., optional arguments or extended
argument domains. The others are keywords bound to transformers that extend the R6RS syntax in some

Chez Scheme Version Version 8.0 Release Notes Page 18

way. This should not be a problem except for R6RS programs that count on exceptions being raised in
cases that coincide with the extensions. For example, if a program passes the = procedure a single numeric
argument and expects an exception to be raised, it will fail in the initial interaction environment because =
returns #t when passed a single numeric argument.

The procedures that are not strictly compatible include the following, which return #t for one argument
(while the R6RS versions require two or more):

<, <=, =, >, >=, char<=?, char<?, char=?, char>=?, char>?, string<=?, string<?, string=?, string>=?,
string>?, char-ci<=?, char-ci<?, char-ci=?, char-ci>=?, char-ci>?, string-ci<=?, string-ci<?,
string-ci=?, string-ci>=?, string-ci>?;

the following, which are extended to accept zero or more arguments:

fx*, fx+, exit;

the following, which is extended to accept one or more arguments:

fx-;

the following, which allow radixes 3, 5–7, 9–15, and 17–36:

string->number, number->string;

the following, which accepts either one or two arguments and allows the first argument to represent a
definition:

eval;

the following, for which the argument is optional and defaults to the current output port:

flush-output-port;

the following, which are parameters and thus may be used to alter the encapsulated value:

command-line, current-error-port, current-input-port, current-output-port,
standard-error-port, standard-input-port, standard-output-port;

the following, which accept an “options” symbol or list:

call-with-input-file, call-with-output-file, open-input-file, open-output-file,
with-input-from-file, with-output-to-file;

and the following, which accept optional arguments:

delete-file, dynamic-wind, file-exists?, record?.

The only keyword that is not strictly compatible is syntax-rules, which allows fenders.

For details on the (scheme) library versions of these procedures and syntactic forms, see the Chez Scheme
Version 7 User’s Guide.

2.54. Incompatible Changes (7.9.2)

Although we have strived to maintain backward compatibility with earlier versions of Scheme wherever
possible, the following incompatible changes have been made to support R6RS.

• The reader now recognizes R6RS hex Unicode escapes in characters, strings, and symbols. In some
cases, characters, strings, and symbols containing next Unicode escapes would have parsed as some
different character, string, or symbol.

• The setting of (case-sensitive) is now #t by default, so the case is distinguished in symbols and
character names.

• The C function Sstring value has been eliminated because strings are no longer represented as byte
strings but rather using an internal representation that supports Unicode. Routines that accepted
Scheme strings as arguments and treated them as nul-terminated byte strings should instead be passed

Chez Scheme Version Version 8.0 Release Notes Page 19

Scheme bytevectors instead. Bytevectors are nul-terminated (with the nul byte being stored in the
first byte beyond the last element of the bytevector and not counted in the length), and the address
of the start of a bytevector’s data can be obtained with Sbytevector data, which is analogous to the
old Sstring value.

• For any foreign-procedure argument declared as a string, a bytevector or a string may be passed. If
a bytevector is passed, the foreign procedure receives the address of the first byte of the bytevector.
Bytevectors are nul-terminated as described above to facilitate the use of bytevectors as arguments to
foreign procedures that expect nul-terminated strings.

If a string is passed, it is copied to a freshly allocated bytevector (since strings are no longer represented
internally as byte arrays) using the equivalent of string->utf8. Modifications of the object by the
foreign procedure affect the freshly allocated bytevector only and are not reflected back to the original
string.

In most cases, it is preferable to pass bytevectors rather than strings to avoid the copying overhead and
so that modifications made by the foreign procedure are visible to the caller. Even when the argument
is represented by a string in Scheme and no modifications are made by the foreign procedure, it may
still be appropriate for the caller to convert the string to a bytevector explicitly when the implicit
UTF-8 conversion is not appropriate.

• R6RS does not treat complex numbers with inexact zero (+0.0 or -0.0) imaginary parts as real num-
bers, nor does it treat infinities and nans as rational numbers. Thus, integer?, rational?, and real?
now return #f for complex numbers with inexact zero imaginary parts, while integer? and rational?
now return #f for +inf.0 and -inf.0, rational? now returns #f for +nan.0. Correspondingly, proce-
dures that accept only integer, only rational, and only real arguments now reject those that no longer
qualify as integer, rational, or real.

• Binary data (bytes) cannot be read from or written to textual ports, and textual data (characters)
cannot be read from or written to binary ports. Source (textual) and compiled (binary) code can thus
no longer be loaded from the same file. Similarly, (binary) fasl data can no longer be combined with
textual data, and fasl data must be read with fasl-read, not read. The port argument of fasl-write
must now be a binary output port and is no longer optional, since there is no current binary output
port.

Applications requiring the mixing of textual and binary data should use a binary port and convert the
portions of the file representing textual data to and from characters or strings using an appropriate
conversion procedure. It is is also possible, when the textual portions are represented using characters
in the Latin-1 character set, to open the port as a textual port using a transcoder constructed from
the latin-1 codec with eol-style none, then convert the binary portions to and from bytes using
char->integer and integer->char.

• The ordering of old and new ids in the module import rename syntax is now old first, new second to
match the import syntax for libraries.

• The letrec and letrec* forms assume the continuations of right-hand-side expressions are invoked
at most once.

• The (scheme) library and default interaction-environment bindings for record-type-descriptor,
record-type-field-names, record-type-name, and record-type-mutable? have their R6RS se-
mantics, which conflicts with the old Chez Scheme semantics. Bindings for these identifiers that
are compatible with the old Chez Scheme semantics, along with bindings for the related proce-
dures record-field-accessible?, record-field-accessor and record-field-mutator, as well as
record-type-symbol and record-type-field-decls, which have all been superseded by R6RS ver-
sions, are available only in the (scheme csv7) compatibility library.

• The error-handler and warning-handler parameters have been eliminated because their semantics
are in direct conflict with the R6RS exception handling mechanism.

Chez Scheme Version Version 8.0 Release Notes Page 20

• The (scheme) library and thus interaction-environment binding for error is compatible with the R6RS
error, which means the second argument is not treated as a format string. When the argument is a
format string, use errorf instead, which is like error except the second argument is treated as a format
string (and the additional arguments as arguments to be consumed while formatting). For consistency,
the same change has been made for warning, and the corresponding procedure warningf has also been
added. Similarly, the new procedure assertion-violationf is like the R6RS assertion-violation
but treats its second argument as a format string.

• The thread-system condition? procedure has been renamed thread-condition?, since the R6RS
condition? predicate is used to test for the condition objects that are passed to exceptions.

• As required by R6RS, of the standard data types, only booleans, numbers, characters, strings, and
bytevectors count as expressions if they are not quoted. In particular, vectors and the empty list
must be quoted. Of the nonstandard data types, fxvectors, #!eof, and #!bwp need not be quoted.
Previously, Chez Scheme treated any unquoted value other than a pair or symbol as a literal.

• Also, as required by R6RS, the hash character (#) is now a delimiter, so, for example, abc#def is no
longer a valid symbol. Although some non-r6rs symbols, like 1+, are still accepted by default on input,
i.e., except after #!r6rs, they are printed using r6rs syntax, e.g., \x31;+. In particular, while 1+ and
1- are still defined as variables bound to increment and decrement procedures, their names print in a
funny way.

2.55. C library routines for 32- and 64-bit integers (7.9.2)

Four new C library operators have been added for converting 32- and 64-bit integers from their Scheme
representations:

• Sinteger32 value(x) returns the 32-bit integer value of the Scheme exact integer x ;

• Sunsigned32 value(x) returns the 32-bit unsigned integer value of the Scheme exact integer x ;

• Sinteger64 value(x) returns the 64-bit integer value of the Scheme exact integer x ; and

• Sunsigned64 value(x) returns the 64-bit unsigned integer value of the Scheme exact integer x .

An exception is raised if a 32-bit value is not in the range −231 through 232 − 1 or a 64-bit values is not in
the range −263 through 264 − 1.

Similarly, four new C library operators have been added for converting 32- and 64-bit integers to their Scheme
representations:

• Sinteger32(x),

• Sunsigned32(x),

• Sinteger64(x), and

• Sunsigned64(x).

Each returns a Scheme exact integer whose value is x . The arguments are signed or unsigned 32- or 64-bit
C integers, as appropriate.

2.56. New nonstandard character names (7.9.2)

The characters #\nel and #\ls, representing the Unicode next-line and line-separator characters, are rec-
ognized by the reader (except after #!r6rs).

Chez Scheme Version Version 8.0 Release Notes Page 21

2.57. Fewer “invalid context for definition” errors (7.9.2)

The expander now expands library body forms left-to-right even after discovering an apparent expression
so that a spelling error in a definition keyword (e.g., defnie for define) results in an “unbound identifier”
error rather than an “invalid context for definition” error for some subsequent definition.

2.58. Windows library change (7.9.1/7.9.2)

Windows builds of Chez Scheme now link against msvcr90.dll. Static libraries built using libcmt are also
available.

2.59. Saved heaps not currently supported (7.9.1)

None of the operating systems upon which Chez Scheme runs provide the guarantees about storage alloca-
tion needed to restore a saved heap with absolute addresses, and while restoration used to work on some
operating systems even without the guarantee, this is generally no longer the case as the operating systems
are randomizing the addresses of data and even code for security purposes. We are looking into ways to
address this problem, including relocatable saved heaps, but for the present, support for saved heaps has
been removed from the system.

2.60. Thread-safe console ports (7.9.1)

Unbuffered file output ports are no longer thread-safe. The default console output port remains thread-safe,
however, and the default console input port is now thread-safe as well. There is a substantial performance
cost in both cases, so programs that need faster I/O should create their own ports and either avoid using them
from multiple threads or arrange for appropriate synchronization. (This is relevant only for the threaded
versions of Chez Scheme.)

2.61. input-port-ready? and char-ready? (7.9.1)

A new input-port-ready? procedure has been that is similar to the old char-ready? but works on both
binary and textual ports. The char-ready? procedure still works for textual ports.

Under Windows, these procedures properly handle files and ports, while in previous releases, char-ready?
always returned #t. In cases where the system cannot determine if input is ready, e.g., for a console port
that has no data already buffered, each of these procedures raises an exception so that the application can
control what happens in such cases. Thus, these procedures either (a) return #f if no input is ready and the
port is not at end of file, (b) return #t if input is ready or the port is at end of file, or (c) raise an exception
if the ready status cannot be determined.

2.62. X86 64 Support (7.9.1)

Support for running Chez Scheme with 64-bit pointers on the x86 64 architecture under Linux, MacOS X,
and OpenBSD with machine types a6le, a6osx, and a6ob for nonthreaded and ta6le, ta6osx, and ta6ob for
threaded, has been added. C code intended to be linked with these versions of the system should be compiled
using the Gnu C compiler’s -m64 option, which may or may not be the default.

2.63. Additional byte-vector operations (7.9.1)

In addition to the standard R6RS bytevector operations, Chez Scheme also supports the following procedures:

Chez Scheme Version Version 8.0 Release Notes Page 22

(bytevector->s8-list bytevector) ⇒ list
(s8-list->bytevector s8-list) ⇒ bytevector
(bytevector fill ...) ⇒ bytevector

where each element of s8-list is an exact integer value ranging from −128 through +128 and each fill is an
exact integer value ranging from −128 through +255.

As with vectors and bytevectors, the reader allows an optional length to appear in the bytevector prefix,
e.g.:

(bytevector? #10vu8(0))

is a bytevector containing 10 zero bytes. (This cannot be used following #!r6rs, which limits the syntax
recognized by the reader to R6RS-only features.)

The read-token procedure returns token types vu8paren and vu8nparen for bytevector prefixes, analogous
to the vparen and vnparen token types for vector prefixes.

The C library interface supports four new bytevector operators:

• Smake bytevector(len,n), which returns a new bytevector of length len with each element set to n;

• Sbytevector u8 ref(bv,i), which returns the ith byte of bv ;

• Sbytevector u8 set(bv,i,n), which sets the ith byte of bv to n; and

• Sbytevector data(bv), which returns a pointer to bv ’s data.

2.64. meta-cond generalization (7.9.1)

The meta-cond syntax has been extended to allow it to be used in definition contexts. meta-cond still
expands into (void) if no clause’s test evaluates to true and no else clause is present, however, which is not
suitable in a definition context. To avoid this problem, use an explicit else clause and expand into (begin).

2.65. Default heap/boot search path (7.9.1)

The default heap and boot search path on Unix-based systems now starts with ˜/lib/csv%v/%m if the home
directory can be determined. The default heap and boot search path is still determined by a registry setting
under Windows.

2.66. Tilde-prefixed paths under Windows (7.9.1)

The filename prefix ˜/ now expands to the user’s home directory under Windows, as on Unix-based systems,
if the HOMEDRIVE and HOMEPATH environment variables are set.

2.67. Months range from 1 to 12 (7.5)

The month field of a date record, e.g., one returned by current-date, runs from 1 through 12 rather than
0 through 11, for compatibility with SRFI 19.

2.68. Monotonic time (7.5)

Requesting monotonic no longer fails on Linux systems that do not support monotonic clocks; on such
systems, the real-time clock is now used instead. All of the high-precision time procedures now fall back on
older time mechanisms when requesting high-precision timers fails.

Chez Scheme Version Version 8.0 Release Notes Page 23

2.69. New and altered expression-editor key bindings (7.5)

The expression editor now binds the common delete-key sequence (Esc[3˜) to ee-delete-char and escape
followed by the same sequence to ee-delete-sexp. The effect of this is that the delete key should now
delete forward rather than backward. The backspace key should still delete backward.

New bindings have also been added for the home and end keys of certain terminal emulators, including the
Gnome terminal.

2.70. Top-level value handling (7.5)

The top-level-value and top-level-bound? procedures now recognize as bound a variable assigned by a
file compiled in one session and loaded into another session—even if the variable was not defined.

3. Bug Fixes

3.1. assert, let-values, etc., and pattern variables or ellipses (8.0)

A bug that caused various problems when pattern variables or ellipses appeared within an assert form or
within a right-hand-side of a let-values, let*-values, or define-values form has been fixed. [This bug
dated back to Version 7.5.]

3.2. Bug in collector handling of weak pairs (8.0)

A collector bug that could result in a nonrecoverable invalid memory reference, triggered when large numbers
of weak pairs are used by an application, has been fixed. [This bug dated back to Version 7.5.]

3.3. Bogus clear-input and clear-output generic-port messages (8.0)

The implementations of clear-input-port and clear-output-port now properly send clear-input-port
and clear-output-port messages to generic ports, rather than clear-input and clear-output. [This bug
dated back to Version 7.5.]

3.4. Bug current-time and current-date under Windows (8.0)

The procedures current-time and current-date were improperly reporting microseconds as nanoseconds
under Windows. This bug has been fixed. [This bug dated back to Version 7.4.]

3.5. Boot file use of scheme-version (7.9.4)

The procedure scheme-version now works properly when called during the loading of a boot file. [This bug
dated back to Version 7.5.]

3.6. Work-around for automatic margins on MacOS X Terminal (7.9.3)

The expression editor disables automatic margins (i.e., automatic line wrapping) when possible so it can use
the last column without scrolling the display. Unfortunately, when automatic margins are disabled in the
MacOS X Terminal application, they are disabled simultaneously for all windows, not just for the current
window, causing problems when the expression editor is running in one window and long lines are printed
in another. The expression editor now disables automatic margins only temporarily while writing text to

Chez Scheme Version Version 8.0 Release Notes Page 24

the last column, reducing (though not entirely eliminating) the possibility that other windows are affected.
[This bug dated back to Version 7.4.]

3.7. Invalid memory reference using hashtables (7.9.3)

A bug that caused corruption of the heap and typically resulted in an “unrecoverable invalid memory
reference” while using the R6RS eq hashtable interface has been fixed. [This bug dated back to Version 7.5.]

3.8. Bug in format tabulation (7.9.3)

A bug resulting in an “undefined for zero” error when the optional column width specifier in a tabulate
directive is zero, e.g., ˜1,0@t, has been fixed. [This bug dated back to Version 7.5.]

3.9. Expression editor datum comment handling (7.5)

The expression editor no longer returns end-of-file for an entry containing only a single commented-out
datum. [This bug dated back to Version 7.4.]

3.10. Expression editor clipboard bug under Windows (7.5)

The expression editor now properly closes the clipboard after a paste (control-v) operation, i.e., no longer
prevents new items from being copied to the clipboard. [This bug dated back to Version 7.4.]

3.11. Bug in ash (7.5)

A bug that caused ash to return the wrong result for word-sized or greater negative (right) shifts of large
powers of two has been fixed. [This bug dated back to Version 7.0.]

3.12. Bug in inexact (7.5)

A bug that could cause inexact (aka exact->inexact) to improperly round an exact value halfway between
two floating-point values has been fixed. [This bug dated back to Version 7.0.]

3.13. Bug in handling of compile (7.5)

A bug in the compiler that caused it to treat the return value of compile as true in test context, no matter
what it actually returns, has been fixed. [This bug dated back to Version 6.0.]

4. Performance Enhancements

4.1. Reduced parameter overhead (7.9.4)

References to locally defined parameters, including thread parameters, are now inlined, thus reducing the
cost of such references.

Chez Scheme Version Version 8.0 Release Notes Page 25

4.2. Reduced predicate overhead for sealed record types (7.9.4)

The code generated by record-predicate for sealed record types is now more efficient than the more general
code produced for non-sealed record types.

4.3. Optimized procedural record interface (7.9.1/7.9.4)

Record constructors, predicates, accessors, and mutators created with the procedural record interface are
often faster than before because the compiler now tracks record-type information through to the sites where
constructors, predicates, accessors, and mutators are created in order to generate specific and inlinable code
for them. The effects of this optimization can be seen with expand/optimize. (This optimization is not
performed by Petite Chez Scheme.)

Initial support for this optimization was implemented in Version 7.9.1, with additional improvements in
Version 7.9.4.

4.4. Reduced letrec* undefined-variable checking overhead (7.9.3)

An improvement in the handling of letrec*, which also affects internal definitions, including library and top-
level program definitions, causes the compiler to produce fewer checks for undefined variables. Improvements
in safe code can be substantial (up to 15% or so), but the amount of improvement is highly dependent on
the structure of the code. Unsafe code (code compiled at optimize-level 3) is not affected, since these checks
are not performed in unsafe code.

4.5. Improved register assignment for x86 (7.9.1)

A better choice of register assignments has resulted in measurable improvement in x86 performance. Actual
improvements differ from one program to another, and we’ve seen anything from -9% decreases in speed to
36% increases, with increases of 5-15% appearing typical.

4.6. Improved recursive bindings (7.9.1)

The compiler now generates better code for some letrec expressions, letrec* expressions, and bodies
containing internal definitions by taking advantage of the R6RS restriction that right-hand-side expressions
should not return to their continuations multiple times.

Chez Scheme Version Version 8.0 Release Notes Page 26

